

Hemp-derived D9

Compliance Packet

Proprietary Information Enclosed

Material Type	Batch/Lot #	Company Name
Biomass	NA /8989500.016	Inov8 Distribution
Starting Hemp Oil	BSD101520	Inov8 Distribution
Isolate	EGI26921A	Inov8 Distribution
Hemp Derived D9	21-014137/D002.R000	Inov8 Distribution

Farm Information

Colorado Department of Agriculture Hemp Registration # 08-103970

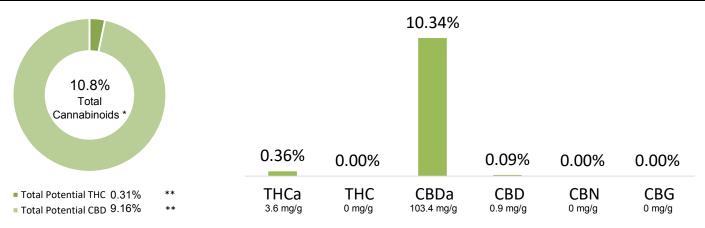
Registration attached within this packet

Manufacturer and Distributor information

Inov8 Distribution distributes all of its own products.

3rd party testing facility information

See attached COAs



CERTIFICATE OF ANALYSIS

SD

Batch ID:	N/A	Test ID:	8989500.016
Reported:	18-Apr-2020	Method:	TM01
Type:	Plant		
Test:	Potency		

CANNABINOID PROFILE

^{*} Total Cannabinoids result reflects the absolute sum of all cannabinoids detected.

NOTES:

Free from visual mold, mildew, and foreign matter.

Certificate reissued with corrected customer name.

FINAL APPROVAL

Greg Zimpfer 18-Apr-2020 12:27 PM

David Green 18-Apr-2020 12:35 PM

PREPARED BY / DATE

APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Services, LLC, in the condition it was received. Botanacor Services, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Services, LLC. ISO/IEC 17025:2005 Accredited A2LA Certificate Number 4329.02

^{**} Total Potential THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during decarboxylation step. Total THC = THC + (THCa *(0.877)) and Total CBD = CBD + (CBDa *(0.877))

^{% = % (}w/w) = Percent (Weight of Analyte / Weight of Product)

Order #: 976201015-020020

Batch #: BSD101520 Sample #: AAAR136

Specimen Type: CBD/HEMP Derivative Products (Inhalation - Heated)

Extracted From: Hemp

Description: Broad Spectrum Distillate Batch #101520

Initial Gross Weight: 112 g Specimen Weight: 267.4 mg

Method: SOP-3

Potency Tested

Passed

Pathogenic

Passed

Heavy Metals Passed

Mycotoxins Passed

Pesticides

Residual Solvents Passed

Listeria Monocytogenes

Passed

101520 AAAR136

The photos on this report are of a sample collected by the lab and may vary from the final packaging.

Total CBD 78.270%

Total THC Not Detected **Total CBG** 0.587%

Total CBN 1.598%

Other Cannabinoids 2.503%

Total Cannabinoids 82.958%

Potency - 11 (Tested)

(HPLC/LCMS) Result LOO Result LOO Result LOQ Analyte (%) Analyte (%) Analyte (mg/g) (%) (mg/g) CBC 16.950 1.695 0.001 CBD 782.700 78.270 0.001 **CBDA** <LOQ 0.001 CBDV 8.083 0.808 0.001 CBG 5.867 0.587 0.001 CBGA <LOQ 0.001 CBN 15.980 1.598 0.001 Delta-8 THC 0.001 Delta-9 THC <LOQ 0.001 THCA-A <L0Q 0.001 **THCV** <L0Q 0.001 **Total CBD** 782.700 78.270 0.001 **Total THC** <LOQ 0.001

*Total CBD = CBD + (CBD-A \star 0.877), *Total THC = THCA-A \star 0.877 + Delta 9 THC, \star CBG Total = (CBGA \star 0.877) + CBG, \star CBN Total = (CBNA \star 0.877) + CBN, \star Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBD Total + THC Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THCV + THCV-A (mg/g) = Milligram per Gram, , LOQ = CBD Total + CBC + CBDV + THCV + THC Limit of Quantitation, , LOD = Limit of Detection , *Measurement of Uncertainty = +/- 5%

Ph.D., DABT

Lab Toxicologist

Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

Order #: 976201015-020020

Batch #: BSD101520 Sample #: AAAR136

Specimen Type: CBD/HEMP Derivative Products (Inhalation - Heated)

Extracted From: Hemp

Description: Broad Spectrum Distillate Batch #101520

Initial Gross Weight: 112 g Specimen Weight: 267.4 mg

Method: SOP-3

Heavy Metals	(Passed)
---------------------	----------

(ICP-MS)

ricavy ivictais	o (rasse	:u <i>)</i>								(11	21 - IVIO
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Arsenic (As)	1500	<l0q< th=""><th>100</th><th>Cadmium (Cd)</th><th>500</th><th><l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<></th></l0q<>	100	Cadmium (Cd)	500	<l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<>	100	Lead (Pb)	500	<l0q< th=""><th>100</th></l0q<>	100
Mercury (Hg)	3000	<l0q< th=""><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<>	100								

(ppb) = Parts per Billion, (ppb) = $(\mu g/kg)$, , LOQ = Limit of Quantitation

Mycotoxins	(Passed))							(LCN	IS/API/	(GCMS)
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Aflatoxin B1	20	<l0q< th=""><th>6</th><th>Aflatoxin B2</th><th>20</th><th><l0q< th=""><th>6</th><th>Aflatoxin G1</th><th>20</th><th><l0q< th=""><th>6</th></l0q<></th></l0q<></th></l0q<>	6	Aflatoxin B2	20	<l0q< th=""><th>6</th><th>Aflatoxin G1</th><th>20</th><th><l0q< th=""><th>6</th></l0q<></th></l0q<>	6	Aflatoxin G1	20	<l0q< th=""><th>6</th></l0q<>	6
Aflatoxin G2	20	<l0q< th=""><th>6</th><th>Ochratoxin A</th><th>20</th><th><l0q< th=""><th>12</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>	6	Ochratoxin A	20	<l0q< th=""><th>12</th><th></th><th></th><th></th><th></th></l0q<>	12				

(ppb) = Parts per Billion, (ppb) = $(\mu g/kg)$, , LOQ = Limit of Quantitation

Mul Om

ueli Gao Lab Toxicologist

Ph.D., DABT

Ainis

Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

Order #: 976201015-020020

Batch #: BSD101520 Sample #: AAAR136

Specimen Type: CBD/HEMP Derivative Products (Inhalation - Heated)

Extracted From: Hemp

Description: Broad Spectrum Distillate Batch #101520

Initial Gross Weight: 112 g Specimen Weight: 267.4 mg

Method: SOP-3

Pesticides FL	V4 (Inh	nalable) (Pass	sed)					(LCN	IS/API/	(GCMS)
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Abamectin	100	<l0q< td=""><td>28.23</td><th>Acephate</th><td>100</td><td><l0q< td=""><td>30</td><th>Acequinocyl</th><td>100</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<></td></l0q<>	28.23	Acephate	100	<l0q< td=""><td>30</td><th>Acequinocyl</th><td>100</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<>	30	Acequinocyl	100	<l0q< td=""><td>48</td></l0q<>	48
Acetamiprid	100	<l0q< td=""><td>30</td><th>Aldicarb</th><td>100</td><td><l0q< td=""><td>30</td><th>Azoxystrobin</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Aldicarb	100	<l0q< td=""><td>30</td><th>Azoxystrobin</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	30	Azoxystrobin	100	<l0q< td=""><td>10</td></l0q<>	10
Bifenazate	100	<l0q< td=""><td>30</td><th>Bifenthrin</th><td>100</td><td><l0q< td=""><td>30</td><th>Boscalid</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Bifenthrin	100	<l0q< td=""><td>30</td><th>Boscalid</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	30	Boscalid	100	<l0q< td=""><td>10</td></l0q<>	10
Captan	700	<l0q< td=""><td>30</td><th>Carbaryl</th><td>500</td><td><l0q< td=""><td>10</td><th>Carbofuran</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Carbaryl	500	<l0q< td=""><td>10</td><th>Carbofuran</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	10	Carbofuran	100	<l0q< td=""><td>10</td></l0q<>	10
Chlorantraniliprole	1000	<l0q< td=""><td>10</td><th>Chlordane</th><td>100</td><td><l0q< td=""><td>10</td><th>Chlorfenapyr</th><td>100</td><td><l0q< td=""><td>30_</td></l0q<></td></l0q<></td></l0q<>	10	Chlordane	100	<l0q< td=""><td>10</td><th>Chlorfenapyr</th><td>100</td><td><l0q< td=""><td>30_</td></l0q<></td></l0q<>	10	Chlorfenapyr	100	<l0q< td=""><td>30_</td></l0q<>	30_
Chlormequat Chloride	1000	<l00< td=""><td>10</td><th>Chlorpyrifos</th><td>100</td><td><l0q< td=""><td>30</td><th>Clofentezine</th><td>200</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l00<>	10	Chlorpyrifos	100	<l0q< td=""><td>30</td><th>Clofentezine</th><td>200</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Clofentezine	200	<l0q< td=""><td>30</td></l0q<>	30
Cnioriae	1000	<luq< td=""><td>10</td><th>Coumaphos</th><td>100</td><td><l0q< td=""><td>48</td><th>Cyfluthrin</th><td>500</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></luq<>	10	Coumaphos	100	<l0q< td=""><td>48</td><th>Cyfluthrin</th><td>500</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	48	Cyfluthrin	500	<l0q< td=""><td>30</td></l0q<>	30
Cypermethrin	500	<l0q< td=""><td>30</td><th>Daminozide</th><td>100</td><td><l0q< td=""><td>30</td><th>Diazinon</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Daminozide	100	<l0q< td=""><td>30</td><th>Diazinon</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Diazinon	100	<l0q< td=""><td>30</td></l0q<>	30
Dichlorvos	100	<l0q< td=""><td>30</td><th>Dimethoate</th><td>100</td><td><l0q< td=""><td>30</td><th>Dimethomorph</th><td>200</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<></td></l0q<>	30	Dimethoate	100	<l0q< td=""><td>30</td><th>Dimethomorph</th><td>200</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<>	30	Dimethomorph	200	<l0q< td=""><td>48</td></l0q<>	48
Ethoprophos	100	<l0q< td=""><td>30</td><th>Etofenprox</th><td>100</td><td><l0q< td=""><td>30</td><th>Etoxazole</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Etofenprox	100	<l0q< td=""><td>30</td><th>Etoxazole</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Etoxazole	100	<l0q< td=""><td>30</td></l0q<>	30
Fenhexamid	100	<l0q< td=""><td>10</td><th>Fenoxycarb</th><td>100</td><td><l0q< td=""><td>30</td><th>Fenpyroximate</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	10	Fenoxycarb	100	<l0q< td=""><td>30</td><th>Fenpyroximate</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Fenpyroximate	100	<l0q< td=""><td>30</td></l0q<>	30
Fipronil	100	<l0q< td=""><td>30</td><th>Flonicamid</th><td>100</td><td><l0q< td=""><td>30</td><th>Fludioxonil</th><td>100</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<></td></l0q<>	30	Flonicamid	100	<l0q< td=""><td>30</td><th>Fludioxonil</th><td>100</td><td><l0q< td=""><td>48</td></l0q<></td></l0q<>	30	Fludioxonil	100	<l0q< td=""><td>48</td></l0q<>	48
Hexythiazox	100	<l0q< td=""><td>30</td><th>Imazalil</th><td>100</td><td><l0q< td=""><td>30</td><th>Imidacloprid</th><td>400</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Imazalil	100	<l0q< td=""><td>30</td><th>Imidacloprid</th><td>400</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Imidacloprid	400	<l0q< td=""><td>30</td></l0q<>	30
Kresoxim Methyl	100	<l0q< td=""><td>30</td><th>Malathion</th><td>100</td><td><l0q< td=""><td>30</td><th>Metalaxyl</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Malathion	100	<l0q< td=""><td>30</td><th>Metalaxyl</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	30	Metalaxyl	100	<l0q< td=""><td>10</td></l0q<>	10
Methiocarb	100	<l0q< td=""><td>30</td><th>Methomyl</th><td>100</td><td><l0q< td=""><td>30</td><th>methyl-Parathion</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Methomyl	100	<l0q< td=""><td>30</td><th>methyl-Parathion</th><td>100</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	30	methyl-Parathion	100	<l0q< td=""><td>10</td></l0q<>	10
Mevinphos	100	<l0q< td=""><td>10</td><th>Myclobutanil</th><td>100</td><td><l0q< td=""><td>30</td><th>Naled</th><td>250</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	10	Myclobutanil	100	<l0q< td=""><td>30</td><th>Naled</th><td>250</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Naled	250	<l0q< td=""><td>30</td></l0q<>	30
Oxamyl	500	<l0q< td=""><td>30</td><th>Paclobutrazol</th><td>100</td><td><l0q< td=""><td>30</td><th>Pentachloronitrober ene</th><td>nz- 150</td><td><l00< td=""><td>10</td></l00<></td></l0q<></td></l0q<>	30	Paclobutrazol	100	<l0q< td=""><td>30</td><th>Pentachloronitrober ene</th><td>nz- 150</td><td><l00< td=""><td>10</td></l00<></td></l0q<>	30	Pentachloronitrober ene	nz- 150	<l00< td=""><td>10</td></l00<>	10
Permethrin	100	<l0q< td=""><td>30</td><th>Phosmet</th><td>100</td><td><l0q< td=""><td>30</td><th>Piperonylbutoxide</th><td>3000</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Phosmet	100	<l0q< td=""><td>30</td><th>Piperonylbutoxide</th><td>3000</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Piperonylbutoxide	3000	<l0q< td=""><td>30</td></l0q<>	30
Prallethrin	100	<l0q< td=""><td>30</td><th>Propiconazole</th><td>100</td><td><l0q< td=""><td>30</td><th>Propoxur</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Propiconazole	100	<l0q< td=""><td>30</td><th>Propoxur</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Propoxur	100	<l0q< td=""><td>30</td></l0q<>	30
Pyrethrins	500	<l0q< td=""><td>30</td><th>Pyridaben</th><td>200</td><td><l0q< td=""><td>30</td><th>Spinetoram</th><td>200</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<></td></l0q<>	30	Pyridaben	200	<l0q< td=""><td>30</td><th>Spinetoram</th><td>200</td><td><l0q< td=""><td>10</td></l0q<></td></l0q<>	30	Spinetoram	200	<l0q< td=""><td>10</td></l0q<>	10
Spinosad	100	<l0q< td=""><td>30</td><th>Spiromesifen</th><td>100</td><td><l0q< td=""><td>30</td><th>Spirotetramat</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Spiromesifen	100	<l0q< td=""><td>30</td><th>Spirotetramat</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Spirotetramat	100	<l0q< td=""><td>30</td></l0q<>	30
Spiroxamine	100	<l0q< td=""><td>30</td><th>Tebuconazole</th><td>100</td><td><l0q< td=""><td>30</td><th>Thiacloprid</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<></td></l0q<>	30	Tebuconazole	100	<l0q< td=""><td>30</td><th>Thiacloprid</th><td>100</td><td><l0q< td=""><td>30</td></l0q<></td></l0q<>	30	Thiacloprid	100	<l0q< td=""><td>30</td></l0q<>	30
Thiamethoxam	500	<l0q< th=""><th>30</th><th>Trifloxystrobin</th><th>100</th><th><l0q< th=""><th>30</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>	30	Trifloxystrobin	100	<l0q< th=""><th>30</th><th></th><th></th><th></th><th></th></l0q<>	30				

(ppb) = Parts per Billion, (ppb) = ($\mu g/kg$), , LOQ = Limit of Quantitation

Xueli Gao Ph.D., DABT Lab Toxicologist

Aixia Sun

Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

Order #: 976201015-020020

Batch #: BSD101520 Sample #: AAAR136

Specimen Type: CBD/HEMP Derivative Products (Inhalation - Heated)

Extracted From: Hemp

Description: Broad Spectrum Distillate Batch #101520

Initial Gross Weight: 112 g Specimen Weight: 267.4 mg

Method: SOP-3

Residual Solvents (CBD) (Passed) (GC/GCM									(GCMS)		
Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)
1,1-	0	1.00	0.16	1,2-	-	1.00	0.04	Acetone	5000	<l0q< th=""><th>2.08</th></l0q<>	2.08
Dichloroethene	8	<l0q< th=""><th>0.16</th><th>dichloroethane</th><th>5</th><th><l0q< th=""><th>0.04</th><th>Acetonitrile</th><th>410</th><th><l0q< th=""><th>1.17</th></l0q<></th></l0q<></th></l0q<>	0.16	dichloroethane	5	<l0q< th=""><th>0.04</th><th>Acetonitrile</th><th>410</th><th><l0q< th=""><th>1.17</th></l0q<></th></l0q<>	0.04	Acetonitrile	410	<l0q< th=""><th>1.17</th></l0q<>	1.17
Benzene	2	<l0q< th=""><th>0.02</th><th>Butanes</th><th>2000</th><th><l0q< th=""><th>2.5</th><th>Chloroform</th><th>60</th><th><l0q< th=""><th>0.04</th></l0q<></th></l0q<></th></l0q<>	0.02	Butanes	2000	<l0q< th=""><th>2.5</th><th>Chloroform</th><th>60</th><th><l0q< th=""><th>0.04</th></l0q<></th></l0q<>	2.5	Chloroform	60	<l0q< th=""><th>0.04</th></l0q<>	0.04
Ethanol	5000	<l0q< th=""><th>2.78</th><th>Ethyl Acetate</th><th>5000</th><th><l0q< th=""><th>1.11</th><th>Ethyl Ether</th><th>5000</th><th><l0q< th=""><th>1.39</th></l0q<></th></l0q<></th></l0q<>	2.78	Ethyl Acetate	5000	<l0q< th=""><th>1.11</th><th>Ethyl Ether</th><th>5000</th><th><l0q< th=""><th>1.39</th></l0q<></th></l0q<>	1.11	Ethyl Ether	5000	<l0q< th=""><th>1.39</th></l0q<>	1.39
Ethylene Oxide	5	<l0q< th=""><th>0.1</th><th>Heptane</th><th>5000</th><th><l0q< th=""><th>1.39</th><th>Hexane</th><th>290</th><th><l0q< th=""><th>1.17</th></l0q<></th></l0q<></th></l0q<>	0.1	Heptane	5000	<l0q< th=""><th>1.39</th><th>Hexane</th><th>290</th><th><l0q< th=""><th>1.17</th></l0q<></th></l0q<>	1.39	Hexane	290	<l0q< th=""><th>1.17</th></l0q<>	1.17
Isopropyl alcohol	500	<l0q< th=""><th>1.39</th><th>Methanol</th><th>3000</th><th><l0q< th=""><th>0.69</th><th>Methylene chloride</th><th>600</th><th><l00< th=""><th>2.43</th></l00<></th></l0q<></th></l0q<>	1.39	Methanol	3000	<l0q< th=""><th>0.69</th><th>Methylene chloride</th><th>600</th><th><l00< th=""><th>2.43</th></l00<></th></l0q<>	0.69	Methylene chloride	600	<l00< th=""><th>2.43</th></l00<>	2.43
Pentane	5000	<l0q< th=""><th>2.08</th><th>Propane</th><th>2100</th><th><l0q< th=""><th>5.83</th><th>Toluene</th><th>890</th><th><l0q< th=""><th>2.92</th></l0q<></th></l0q<></th></l0q<>	2.08	Propane	2100	<l0q< th=""><th>5.83</th><th>Toluene</th><th>890</th><th><l0q< th=""><th>2.92</th></l0q<></th></l0q<>	5.83	Toluene	890	<l0q< th=""><th>2.92</th></l0q<>	2.92
Total Xylenes	2170	<l0q< th=""><th>2.92</th><th>Trichloroethylene</th><th>80</th><th><l0q< th=""><th>0.49</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>	2.92	Trichloroethylene	80	<l0q< th=""><th>0.49</th><th></th><th></th><th></th><th></th></l0q<>	0.49				

(ppm) = Parts per Million, (ppm) = $(\mu g/g)$, , LOQ = Limit of Quantitation

Listeria Monocytogenes (Passed)

Result	
Absence	
in 1g	
	Absence

(qPCR)

Yueli Gao

Lab Toxicologist

Aixia Sun

Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization

721 Cortaro Drive Sun City Center, FL - 33573

Ph.D., DABT

P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com

imis

License No. 800025015 CLIA No. 10D1094068

Order #: 976201015-020020

Batch #: BSD101520 Sample #: AAAR136

Specimen Type: CBD/HEMP Derivative Products (Inhalation - Heated)

Extracted From: Hemp

Description: Broad Spectrum Distillate Batch #101520

Initial Gross Weight: 112 g Specimen Weight: 267.4 mg

Method: SOP-3

Pathogenic SE (qPCR) (Passed)

(qPCR)

Analyte	Result (cfu/g)	Analyte	Result (cfu/g)	
E.Coli	Absence	Salmonella	Absence	

(cfu/g) = Colony Forming Unit per Gram

and our

Ph.D., DABT

Lab Toxicologist

Aixia Sun

Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

inis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

ICAL ID: 20211115-015 Sample: CA220202-013-035 CBD isolate- EGI26921A Strain: CBD isolate- EGI26921A Category: Concentrates & Extracts Batch#: EGI26921A Batch Size Collected: Total Batch Size: Collected: 11/17/2021; Received: 11/17/2021 Completed: 02/02/2022

Moisture	Total THC	Total CBD	Total Cannabinoids	Total Terpenes
NT Water Activity	ND	99.25%	99.89%	NT
NT				

Summary	SOP Used	Date Tested	
Batch			Pass
Cannabinoids	POT-PREP-001 High	11/15/2021	Complete
Residual Solvents	CO-RS-PREP-001	11/15/2021	Pass
Microbials	MICRO-PREP-001	11/16/2021	Pass
Mycotoxins	PESTMYCO-LC-PREP-001	11/15/2021	Pass
Heavy Metals	HM-PREP-001	11/15/2021	Pass
Foreign Matter	FM-PREP-001	11/15/2021	Pass
Pesticides	PESTMYCO-LC-PREP-001/	11/15/2021	Pass
	PEST-GC-PREP-001		

Cannabinoid Profile

Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g	<u>An</u>
THCa	0.5060	0.1271	ND	ND	CB
Δ9-THC	0.5060	0.1408	ND	ND	CB
Δ8-THC	0.5060	0.0695	ND	ND	CB
THCV	0.5060	0.0582	ND	ND	CB
CBDa	0.5060	0.1307	ND	ND	CB
CBD	0.5060	0.1121	99.25	992.5	Tot
					Tot

Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g
CBDV	0.5060	0.0579	0.64	6.4
CBN	0.5060	0.1073	ND	ND
CBGa	0.5452	0.1817	ND	ND
CBG	0.5390	0.1797	ND	ND
CBC	0.6255	0.2085	ND	ND
Total THC			ND	ND
Total CBD			99.25	992.52
Total			99.89	998.94

Total THC=THCa* 0.877 + d9-THC; Total CBD = CBDa* 0.877 + CBD. LOD= Limit of Detection, LOQ= Limit of Quantitation, ND= Not Detected, NR= Not Reported. Potency is reported on a dry weight basis. Instrumentation and analysis SOPs used: Cannabinoids:UHPLC-DAD(POT-INST-005), Moisture:Moisture Analyzer(MOISTURE-001), Water Activity:Water Activity Meter(WA-INST-002), Foreign Material:Microscope(FOREIGN-001). Density measured at 19-24 °C, Water Activity measured at 0-90% RH. All QA submitted by the client, All CA State Compliance sampled using SAMPL-SOP-001.

Terpene Profile

Analyte	LOQ (mg/g)	LOD (mg/g) %	mg/g Analyte	LOQ (mg/g)	LOD (mg/g) % mg	g/g
Allalyte	LOQ (IIIg/g)	LOD (IIIg/g) /0	ilig/g Alialyte	LOQ (IIIg/g)	LOD (IIIg/g) /0 IIIg	3/B

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: HS-GC-MS; samples analyzed according to SOP TERP-INST-003.

Infinite Chemical Analysis Labs 8380 Miramar Mall #102 San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000019-LIC

Josh M Swider

Josh Swider Lab Director, Managing Partner 02/02/2022 Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

ICAL ID: 20211115-015 Sample: CA220202-013-035 CBD isolate- EGI26921A Strain: CBD isolate- EGI26921A Category: Concentrates & Extracts Batch#: EGI26921A Batch Size Collected: Total Batch Size: Collected: 11/17/2021; Received: 11/17/2021 Completed: 02/02/2022

Residual Solvent Analysis

Category 1	LOQ	LOD Limi	t Status	Category 2	LOQ LOD Limit	Status	Category 2	LOQ LOD Limit :	Status
1,2-Dichloro-Ethane	μg/g μg/g ND 0.5091 0	μg/g μg/ .1697	g 1 Pass	Acetone	µg/g µg/g µg/g µg/g ND51.245717.08195000	Pass	n-Hexane	µg/g µg/g µg/g µg/g ND 0.2807 0.0659 290	Pass
Benzene	ND 0.0639 0	.0213	1 Pass	Acetonitrile	ND 0.3593 0.1198 410	Pass	Isopropanol	ND 3.8401 1.28 5000	Pass
Chloroform	ND 0.1084 0	.0361	1 Pass	Butane	ND 4.8491 0.97095000	Pass	Methanol	ND 8.9165 2.9722 3000	Pass
Ethylene Oxide	ND 0.5787 0	.1529	1 Pass	Ethanol	ND 7.8434 2.61455000	Pass	Pentane	ND 4.2706 0.9619 5000	Pass
Methylene-Chloride	ND 0.7288 0	.1267	1 Pass	Ethyl-Acetate	ND 2.2878 0.31255000	Pass	Propane	ND 13.3022 4.4341 5000	Pass
Trichloroethene	ND 0.1454 0.	.0179	1 Pass	Ethyl-Ether	ND 3.5475 1.18255000	Pass	Toluene	ND 0.8637 0.0882 890	Pass
				Heptane	ND 2.8588 0.68665000	Pass	Xylenes	ND 0.857 0.1007 2170	Pass

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: HS-GC-MS; samples analyzed according to SOP RS-INST-003.

Heavy Metal Screening

		LOQ	LOD	Limit	Status
	μg/g	µg/g	µg/g	μg/g	
Arsenic	ND	0.009	0.003	0.2	Pass
Cadmium	0.006	0.002	0.001	0.2	Pass
Lead	<loq< td=""><td>0.004</td><td>0.001</td><td>0.5</td><td>Pass</td></loq<>	0.004	0.001	0.5	Pass
Mercury	ND	0.014	0.005	0.1	Pass

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: ICP-MS; samples analyzed according to SOP HM-INST-003.

Microbiological Screening

	Limit	Result	Status
	CFU/g	CFU/g	
Aspergillus flavus		NR	NT
Aspergillus fumigatus		NR	NT
Aspergillus niger		NR	NT
Aspergillus terreus		NR	NT
STEC		Not Detected	Pass
Salmonella SPP		Not Detected	Pass

ND=Not Detected. Analytical instrumentation used:qPCR; samples analyzed according to SOP MICRO-INST-001.

Infinite Chemical Analysis Labs 8380 Miramar Mall #102 San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000019-LIC

Josh Swider Lab Director, Managing Partner 02/02/2022 Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

ICAL ID: 20211115-015 Sample: CA220202-013-035 CBD isolate- EGI26921A Strain: CBD isolate- EGI26921A Category: Concentrates & Extracts Batch#: EGI26921A Batch Size Collected: Total Batch Size: Collected: 11/17/2021; Received: 11/17/2021 Completed: 02/02/2022

Chemical Residue Screening

Category 1		LOQ	LOD	Status	Мус
	μg/g	µg/g	μg/g	_	
Aldicarb	ND	0.030	0.008	Pass	В1
Carbofuran	ND	0.030	0.005	Pass	B2
Chlordane	ND	0.075	0.025	Pass	G1
Chlorfenapyr	ND	0.075	0.025	Pass	G2
Chlorpyrifos	ND	0.046	0.015	Pass	Och
Coumaphos	ND	0.030	0.004	Pass	Tota
Daminozide	ND	0.053	0.018	Pass	
Dichlorvos	ND	0.055	0.018	Pass	
Dimethoate	ND	0.030	0.006	Pass	
Ethoprophos	ND	0.030	0.006	Pass	
Etofenprox	ND	0.030	0.004	Pass	
Fenoxycarb	ND	0.030	0.004	Pass	
Fipronil	ND	0.050	0.017	Pass	
lmazalil	ND	0.030	0.009	Pass	
Methiocarb	ND	0.030	0.002	Pass	
Mevinphos	ND	0.030	0.008	Pass	
Paclobutrazol	ND	0.030	0.009	Pass	
Parathion Methyl	ND	0.024	0.008	Pass	
Propoxur	ND	0.030	0.008	Pass	
Spiroxamine	ND	0.030	0.006	Pass	
Thiacloprid	ND	0.030	0.005	Pass	

Mycotoxins		LOQ	LOD	Limit	Status
	μg/kg	μg/kg	μg/kg	µg/kg	
B1	ND	8.98	2.96		Tested
B2	ND	10.17	3.36		Tested
G1	ND	5.25	1.73		Tested
G2	ND	6.26	2.07		Tested
Ochratoxin A	ND	13.37	4.41	20	Pass
Total Aflatoxins	ND			20	Pass

Category 2		LOQ	LOD	Limit	Status	Category 2		LOQ	LOD	Limit	Status
	μg/g	µg/g	μg/g	μg/g			μg/g	µg/g	μg/g	μg/g	
Abamectin	ND	0.099	0.033	0.1	Pass	Kresoxim Methyl	ND	0.030	0.007	0.1	Pass
Acephate	ND	0.030	0.007	0.1	Pass	Malathion	ND	0.030	0.003	0.5	Pass
Acequinocyl	ND	0.046	0.015	0.1	Pass	Metalaxyl	ND	0.030	0.005	2	Pass
Acetamiprid	ND	0.030	0.005	0.1	Pass	Methomyl	ND	0.030	0.009	1	Pass
Azoxystrobin	ND	0.030	0.005	0.1	Pass	Myclobutanil	ND	0.030	0.007	0.1	Pass
Bifenazate	ND	0.030	0.007	0.1	Pass	Naled	ND	0.030	0.008	0.1	Pass
Bifenthrin	ND	0.030	0.004	3	Pass	Oxamyl	ND	0.030	0.007	0.5	Pass
Boscalid	ND	0.030	0.008	0.1	Pass	Pentachloronitrobenzene	ND	0.054	0.018	0.1	Pass
Captan	ND	0.358	0.120	0.7	Pass	Permethrin	ND	0.030	0.002	0.5	Pass
Carbaryl	ND	0.030	0.006	0.5	Pass	Phosmet	ND	0.030	0.005	0.1	Pass
Chlorantraniliprole	ND	0.030	0.009	10	Pass	Piperonyl Butoxide	ND	0.030	0.003	3	Pass
Clofentezine	ND	0.030	0.002	0.1	Pass	Prallethrin	ND	0.071	0.023	0.1	Pass
Cyfluthrin	ND	0.056	0.019	2	Pass	Propiconazole	ND	0.030	0.009	0.1	Pass
Cypermethrin	ND	0.181	0.060	1	Pass	Pyrethrins	ND	0.030	0.003	0.5	Pass
Diazinon	ND	0.030	0.005	0.1	Pass	Pyridaben	ND	0.030	0.002	0.1	Pass
Dimethomorph	ND	0.030	0.005	2	Pass	Spinetoram	ND	0.030	0.001	0.1	Pass
Etoxazole	ND	0.030	0.004	0.1	Pass	Spinosad	ND	0.030	0.001	0.1	Pass
Fenhexamid	ND	0.034	0.011	0.1	Pass	Spiromesifen	ND	0.030	0.009	0.1	Pass
Fenpyroximate	ND	0.030	0.004	0.1	Pass	Spirotetramat	ND	0.030	0.008	0.1	Pass
Flonicamid	ND	0.035	0.012	0.1	Pass	Tebuconazole	ND	0.030	0.006	0.1	Pass
Fludioxonil	ND	0.036	0.012	0.1	Pass	Thiamethoxam	ND	0.030	0.008	5	Pass
Hexythiazox	ND	0.030	0.001	0.1	Pass	Trifloxystrobin	ND	0.030	0.003	0.1	Pass
<u>Imidacloprid</u>	ND	0.033	0.011	5	Pass						

Other Analyte(s):

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: LC-MS-MS & GC-MS-MS; samples analyzed according to SOPs PESTMYCO-LC-INST-004 and PEST-GC-INST-003.

Infinite Chemical Analysis Labs 8380 Miramar Mall #102 San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000019-LIC

Josh M Swider

Josh Swider Lab Director, Managing Partner 02/02/2022 Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

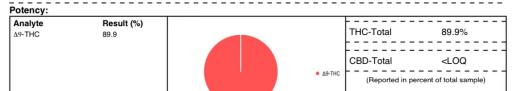
12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Number: 21-014137/D002.R000

Report Date: 12/09/2021 ORELAP#: OR100028

Purchase Order:

Received: 12/03/21 13:30


Customer:

Product identity: Hemp Derived Dist #11

Client/Metrc ID:

Laboratory ID: 21-014137-0011

Summary

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

Analyte Result Limits Status

(mg/kg) (mg/kg)

Multi-Residue Pesticide Profile† < LOQ for all analytes

Metals:

Less than LOQ for all analytes.

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Customer:

Product identity: Hemp Derived Dist #11

Client/Metrc ID:

Sample Date:

Laboratory ID: 21-014137-0011

Evidence of Cooling: No 20.2 °C Temp: Relinquished by: **UPS**

Report Number: 21-014137/D002.R000

Report Date: 12/09/2021 ORELAP#: OR100028

Purchase Order:

Received: 12/03/21 13:30

Sample Results

Potency	Method J	AOAC 2015 V98	3-6 (mod)	Units %	Batch: 2110964	Analyze: 12/7/21	10:52:00 PM
Analyte		Dry LOQ	Notes				
		weight					
CBC	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
CBC-A [†]	< LOQ	0.0958					
CBC-Total†	<loq< td=""><td>0.180</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.180					
CBD	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td> Δ9-THC </td></loq<>	0.0958					 Δ9-THC
CBD-A	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
CBD-Total	<loq< td=""><td>0.180</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.180					
CBDV [†]	< LOQ	0.0958					
CBDV-A†	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
CBDV-Total†	<loq< td=""><td>0.179</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.179					
CBE†	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
CBG [†]	< LOQ	0.0958					
CBG-A†	< LOQ	0.0958					
CBG-Total	<loq< td=""><td>0.179</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.179					
CBL [†]	< LOQ	0.0958					
CBL-A†	< LOQ	0.0958					
CBL-Total†	<loq< td=""><td>0.180</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.180					
CBN	< LOQ	0.0958					
CBT [†]	< LOQ	0.0958					
Δ8-THC [†]	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
Δ8-THCV	< LOQ	0.0958					
Δ9-THC	89.9	0.958					
THC-A	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
THC-Total	89.9	1.04					
THCV [†]	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
THCV-A†	<loq< td=""><td>0.0958</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.0958					
THCV-Total [†]	<loq< td=""><td>0.179</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.179					
Total Cannabinoids†	89.9						

Page 2 of 15

WWW.Columbialanor/alforles.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories qualiunless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the prior arrangements have been made.
Testing in accordance with: OAR 333-007-0410 OAR 333-007-0430

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Number: 21-014137/D002.R000 Report Date: 12/09/2021

ORELAP#: OR100028

Purchase Order:

Received: 12/03/21 13:30

Solvents	Method	Residua	al Solv	ents by	GC/MS	Units µg/g Batch 2	110881	Analyz	12/0	07/21 07	:58 AM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status I	Notes
1,4-Dioxane	<loq< td=""><td>380</td><td>100</td><td>pass</td><td></td><td>2-Butanol</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	380	100	pass		2-Butanol	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2-Ethoxyethanol	<loq< td=""><td>160</td><td>30.0</td><td>pass</td><td></td><td>2-Methylbutane (Isopentane)</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	160	30.0	pass		2-Methylbutane (Isopentane)	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2-Propanol (IPA)</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		30.0			2-Propanol (IPA)	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2,2-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2,2-Dimethylpropane (neo-pentane)</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		30.0			2,2-Dimethylpropane (neo-pentane)	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2,3-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>3-Methylpentane</td><td>< LOQ</td><td></td><td>30.0</td><td></td><td></td></loq<>		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	<loq< td=""><td>2.00</td><td>1.00</td><td>pass</td><td></td><td>Butanes (sum)</td><td>< LOQ</td><td>5000</td><td>400</td><td>pass</td><td></td></loq<>	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	<loq< td=""><td>3880</td><td>200</td><td>pass</td><td></td><td>Ethyl acetate</td><td>< LOQ</td><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	<loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethyl ether</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		200			Ethyl ether	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethylene glycol	<loq< td=""><td>620</td><td>200</td><td>pass</td><td></td><td>Ethylene oxide</td><td>< LOQ</td><td>50.0</td><td>20.0</td><td>pass</td><td></td></loq<>	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	<loq< td=""><td>70.0</td><td>30.0</td><td>pass</td><td></td><td>m,p-Xylene</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	70.0	30.0	pass		m,p-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Methanol	<loq< td=""><td>3000</td><td>200</td><td>pass</td><td></td><td>Methylene chloride</td><td>< LOQ</td><td>600</td><td>60.0</td><td>pass</td><td></td></loq<>	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	<loq< td=""><td></td><td>200</td><td></td><td></td><td>n-Butane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			n-Butane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>o-Xylene</td><td>< LOQ</td><td></td><td>200</td><td></td><td></td></loq<>		200			o-Xylene	< LOQ		200		
Pentanes (sum)	<loq< td=""><td>5000</td><td>600</td><td>pass</td><td></td><td>Propane</td><td>< LOQ</td><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	<loq< td=""><td></td><td>400</td><td></td><td></td><td>Total Xylenes and Ethyl benzene</td><td><loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<></td></loq<>		400			Total Xylenes and Ethyl benzene	<loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<>	2170	600	pass	

Pesticides Method AOAC 2007.01 & EN 15662 (mod) Units mg/kg Batch 2110906 Analyze 12/07/21 01:16 PM Analyte Limits Status Notes

Multi-Residue Pesticide Profile¹ < LOQ for all analytes

Metals									
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Status	Notes
Arsenic	< LOQ	0.200	mg/kg	0.0480	2110945	12/08/21	AOAC 2013.06 (mod.)	pass	X
Cadmium	< LOQ	0.200	mg/kg	0.0480	2110945	12/08/21	AOAC 2013.06 (mod.)	pass	X
Lead	< LOQ	0.500	mg/kg	0.0480	2110945	12/08/21	AOAC 2013.06 (mod.)	pass	X
Mercury	< LOQ	0.100	mg/kg	0.0240	2110945	12/08/21	AOAC 2013.06 (mod.)	pass	X

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Date:

Report Number: 21-014137/D002.R000 12/09/2021

Page 3 of 15

ORELAP#: OR100028

Purchase Order:

Received: 12/03/21 13:30

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Status Notes
Aflatoxin B2†	< LOQ		μ g/kg	5.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
Aflatoxin B1†	<loq< td=""><td></td><td>μg/kg</td><td>5.00</td><td>2110902</td><td>12/07/21</td><td>AOAC 2007.01 & EN 15</td><td></td></loq<>		μ g/kg	5.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
Aflatoxin G1 [†]	<loq< td=""><td></td><td>μg/kg</td><td>5.00</td><td>2110902</td><td>12/07/21</td><td>AOAC 2007.01 & EN 15</td><td></td></loq<>		μg/kg	5.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
Aflatoxin G2†	< LOQ		μg/kg	5.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2110902	12/07/21	AOAC 2007.01 & EN 15	
Fumonisin B1 [†]	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2110902</td><td>12/07/21</td><td>AOAC 2007.01 & EN 15</td><td></td></loq<>		μg/kg	200	2110902	12/07/21	AOAC 2007.01 & EN 15	
Fumonisin B2 [†]	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2110902</td><td>12/07/21</td><td>AOAC 2007.01 & EN 15</td><td></td></loq<>		μ g/kg	200	2110902	12/07/21	AOAC 2007.01 & EN 15	
HT2-Toxin†	< LOQ		μg/kg	40.0	2110902	12/07/21	AOAC 2007.01 & EN 15	
Nivalenol†	< LOQ		μg/kg	400	2110902	12/07/21	AOAC 2007.01 & EN 15	
Ochratoxin A [†]	< LOQ		μ g/kg	5.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2110902	12/07/21	AOAC 2007.01 & EN 15	
T2-Toxin†	< LOQ		μg/kg	20.0	2110902	12/07/21	AOAC 2007.01 & EN 15	
Zearalenone [†]	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2110902</td><td>12/07/21</td><td>AOAC 2007.01 & EN 15</td><td></td></loq<>		μg/kg	200	2110902	12/07/21	AOAC 2007.01 & EN 15	